Friday, 19 November 2010

What is an Operating System? (Wikipedia)

Early computers were built to perform a series of single tasks, like a calculator. Operating systems did not exist in their modern and more complex forms until the early 1960s.[4] Some operating system features were developed in the 1950s, such as monitor programs that could automatically run different application programs in succession to speed up processing. Hardware features were added that enabled use of runtime libraries, interrupts, and parallel processing. When personal computers by companies such as Apple Inc., Atari, IBM and Amiga became popular in the 1980s, vendors added operating system features that had previously become widely used on mainframe and mini computers. Later, many features such as graphical user interface were developed specifically for personal computer operating systems.

An operating system consists of many parts. One of the most important components is the kernel, which controls low-level processes that the average user usually cannot see: it controls how memory is read and written, the order in which processes are executed, how information is received and sent by devices like the monitor, keyboard and mouse, and deciding how to interpret information received by networks. The user interface is a component that interacts with the computer user directly, allowing them to control and use programs. The user interface may be graphical with icons and a desktop, or textual, with a command line. Application programming interfaces provide services and code libraries that let applications developers write modular code reusing well defined programming sequences in user space libraries or in the operating system itself. Which features are considered part of the operating system is defined differently in various operating systems. For example, Microsoft Windows considers its user interface to be part of the operating system, while many versions of Linux do not.

Tech Operating System Tutorials

What is an Operating System?

Tech Hardware Tutorials

What is Arduino?

What is Arduino? (Wikipedia)

Arduino is an open-source electronics prototyping platform, designed to make the process of using electronics in multidisciplinary projects more accessible. The hardware consists of a simple open hardware design for the Arduino board with an Atmel AVR processor and on-board I/O support. The software consists of a standard programming language and the boot loader that runs on the board.[1]

Arduino hardware is programmed using a Wiring-based language (syntax + libraries), similar to C++ with some simplifications and modifications, and a Processing-based IDE.[1]

Currently shipping versions can be purchased pre-assembled; hardware design information is available for those who would like to assemble an Arduino by hand. Additionally, Arduino-inspired clones with varying levels of compatibility have been released by third parties.

The Arduino project received an honorary mention in the Digital Communities category at the 2006 Prix Ars Electronica.[2][3]

The project began in Ivrea, Italy in 2005 to make a device for controlling student-built interaction design projects less expensively than other prototyping systems available at the time. As of February 2010 more than 120,000 Arduino boards had been shipped.[4] Founders Massimo Banzi and David Cuartielles named the project after a local bar named Arduino.[5] The name is an Italian masculine first name, meaning "strong friend". The English equivalent is "Hardwin", a namesake of Arduino d'Ivrea[6]

An Arduino board consists of an 8-bit Atmel AVR microcontroller with complementary components to facilitate programming and incorporation into other circuits. An important aspect of the Arduino is the standard way that connectors are exposed, allowing the CPU board to be connected to a variety of interchangeable add-on modules (known as shields). Official Arduinos have used the megaAVR series of chips, specifically the ATmega8, ATmega168, ATmega328, and ATmega1280. A handful of other processors have been used by Arduino clones. Most boards include a 5 volt linear regulator and a 16 MHz crystal oscillator (or ceramic resonator in some variants), although some designs such as the LilyPad run at 8 MHz and dispense with the onboard voltage regulator due to specific form-factor restrictions. An Arduino's microcontroller is also pre-programmed with a bootloader that simplifies uploading of programs to the on-chip flash memory, compared with other devices that typically need an external chip programmer.

At a conceptual level, when using the Arduino software stack all boards are programmed over an RS-232 serial connection, but the way in which this is implemented varies by hardware version. Serial Arduino boards contain a simple inverter circuit to convert between RS-232-level and TTL-level signals. Current Arduino boards are programmed via USB, implemented using USB-to-serial adapter chips such as the FTDI FT232. Some variants, such as the Arduino Mini and the unofficial Boarduino, use a detachable USB-to-serial adapter board or cable, Bluetooth or other methods. (When used with traditional microcontroller tools instead of the Arduino IDE, standard AVR ISP programming is used.)

The Arduino board exposes most of the microcontroller's I/O pins for use by other circuits. The Diecimila, now superseded by the Duemilanove, for example, provides 14 digital I/O pins, 6 of which can produce PWM signals, and 6 analog inputs. These pins are available on the top of the board, via female 0.1 inch headers. Several plug-in application boards known as "shields" are also commercially available.

Tech Tutorials

Tech Hardware Tutorials

Tech Operating System Tutorials

Tech Programming Tutorials

Tech Mobile Tutorials

Thursday, 18 November 2010

What is a Web Service (Wikipedia)

A web service is typically an application programming interface (API) or Web API that is accessed via Hypertext Transfer Protocol (HTTP) and executed on a remote system, hosting the requested service. Web services tend to fall into one of two camps: big web services[1] and RESTful web services.

The W3C defines a "web service" as "a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically Web Services Description Language WSDL). Other systems interact with the web service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards."[2]

The W3C also states, "We can identify two major classes of Web services, REST-compliant Web services, in which the primary purpose of the service is to manipulate XML representations of Web resources using a uniform set of "stateless" operations; and arbitrary Web services, in which the service may expose an arbitrary set of operations.